The AEPD gives a non-comprehensive verification list for PrivacybyDesign audits in chapter VIII of its guidance (in English!)
https://www.aepd.es/sites/default/files/2020-10/guia-proteccion-datos-por-defecto-en.pdf
[protecting people by good design, solid security, efficient processes and trusted services]
The AEPD gives a non-comprehensive verification list for PrivacybyDesign audits in chapter VIII of its guidance (in English!)
https://www.aepd.es/sites/default/files/2020-10/guia-proteccion-datos-por-defecto-en.pdf
Good HoganLovell summary of French DataHub case.
Die Datenverarbeitung des Betriebsarztes
Hinweise zum datenschutzgerechten Umgang mit Patientendaten durch Betriebsärzte und betriebsärztliche Dienste
https://www.netzwerk-datenschutzexpertise.de/sites/default/files/gut_2020_09_betriebsarzt_v1_0.pdf
(Medizinische Dienste)
From Annex 2 of wp248 rev.01 Guidelines on Data Protection Impact Assessment (DPIA) and determining whether processing is “likely to result in a high risk” for the purposes of Regulation 2016/679 at https://ec.europa.eu/newsroom/article29/items/611236:
Annex 2 – Criteria for an acceptable DPIA
The WP29 proposes the following criteria which data controllers can use to assess whether or not a DPIA, or a methodology to carry out a DPIA, is sufficiently comprehensive to comply with the GDPR:
(IAB TCF = system Google and others use to legitimise online tracking)
https://blog.google/products/marketingplatform/analytics/
Also integrates with IAB framework 2.0:
https://iabeurope.eu/tcf-2-0/
(And all statements on processor vs. controller likely to be taken with a grain of salt.)
The DPA of Bavaria has published the following checklists (in German)
at https://www.lda.bayern.de/de/checklisten.html:
Anonymization and Pseudonymization of data used in Machine Learning Projects
Examples given:
Key words: